Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
J Med Chem ; 67(8): 6425-6455, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38613499

RESUMEN

The RAS-RAF-MEK-ERK signaling cascade is abnormally activated in various tumors, playing a crucial role in mediating tumor progression. As the key component at the terminal stage of this cascade, ERK1/2 emerges as a potential antitumor target and offers a promising therapeutic strategy for tumors harboring BRAF or RAS mutations. Here, we identified 36c with a (thiophen-3-yl)aminopyrimidine scaffold as a potent ERK1/2 inhibitor through structure-guided optimization for hit 18. In preclinical studies, 36c showed powerful ERK1/2 inhibitory activities (ERK1/2 IC50 = 0.11/0.08 nM) and potent antitumor efficacy both in vitro and in vivo against triple-negative breast cancer and colorectal cancer models harboring BRAF and RAS mutations. 36c could directly inhibit ERK1/2, significantly block the phosphorylation expression of their downstream substrates p90RSK and c-Myc, and induce cell apoptosis and incomplete autophagy-related cell death. Taken together, this work provides a promising ERK1/2 lead compound for multiple tumor-treatment drug discovery.


Asunto(s)
Antineoplásicos , Inhibidores de Proteínas Quinasas , Pirimidinas , Humanos , Pirimidinas/farmacología , Pirimidinas/síntesis química , Pirimidinas/química , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/síntesis química , Animales , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Relación Estructura-Actividad , Ratones , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 1 Activada por Mitógenos/antagonistas & inhibidores , Tiofenos/farmacología , Tiofenos/síntesis química , Tiofenos/química , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/antagonistas & inhibidores , Línea Celular Tumoral , Descubrimiento de Drogas , Apoptosis/efectos de los fármacos , Femenino , Ratones Desnudos , Ensayos de Selección de Medicamentos Antitumorales , Estructura Molecular , Proliferación Celular/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto , Ratones Endogámicos BALB C
2.
BMJ Open ; 14(3): e074854, 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38471679

RESUMEN

OBJECTIVE: To evaluate the quality and analyse the content of clinical practice guidelines regarding central venous catheter-related thrombosis (CRT) to provide evidence for formulating an evidence-based practice protocol and a risk assessment scale to prevent it. DESIGN: Scoring and analysis of the guidelines using the AGREE II and AGREE REX scales. DATA SOURCES: Pubmed, Embase, Cochrane Library, Web of Science, CNKI, Wanfang, VIP, and the Chinese Biomedical Literature, and the relevant websites of the guideline, were searched from 1 January 2017 to 26 March 2022. ELIGIBILITY CRITERIA: Guidelines covering CRT treatment, prevention, or management were included from 1 January 2017 to 26 March 2022. DATA EXTRACTION AND SYNTHESIS: Three independent reviewers systematically trained in using the AGREE II and AGREE REX scales were selected to evaluate these guidelines. RESULTS: Nine guidelines were included, and the quality grade results showed that three were at A-level and six were at B-level. The included guidelines mainly recommended the prevention measure of central venous CRT from three aspects: risk screening, prevention strategies, and knowledge training, with a total of 22 suggestions being recommended. CONCLUSION: The overall quality of the guidelines is high, but there are few preventive measures for central venous CRT involved in the guidelines. All preventive measures have yet to be systematically integrated and evaluated, and no risk assessment scale dedicated to this field has been recommended. Therefore, developing an evidence-based practice protocol and a risk assessment scale to prevent it is urgent.


Asunto(s)
Catéteres Venosos Centrales , Trombosis , Humanos , Práctica Clínica Basada en la Evidencia , Guías de Práctica Clínica como Asunto
3.
J Med Chem ; 66(8): 5719-5752, 2023 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-37042119

RESUMEN

Epidermal growth factor receptor (EGFR) is one of the most studied drug targets for the treatment of non-small-cell lung cancer (NSCLC). Here, we report the identification, structure optimization, and structure-activity relationship studies of quinazoline derivatives as novel selective EGFR L858R/T790M inhibitors. The most promising compound, 28f, exhibited strong inhibitory activity against EGFR L858R/T790M (IC50 = 3.5 nM) and greater than 368-fold selectivity over EGFR WT (IC50 = 1290 nM), a 6.7-fold improvement over osimertinib. Furthermore, 28f effectively inhibited downstream signaling pathways and induced apoptosis in mutant cells. In the H1975 xenograft in vivo model, 28f exhibited a good tumor suppressive effect. Furthermore, the combination of 28f with the ACK1 inhibitor dasatinib produced synergistic antiproliferative efficacy with 28f in 28f-resistant cells and in vivo. In conclusion,28f could become a candidate drug for the treatment of NSCLC, and the combination of 28f and dasatinib is expected to overcome EGFR resistance.


Asunto(s)
Antineoplásicos , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Receptores ErbB/metabolismo , Neoplasias Pulmonares/tratamiento farmacológico , Proliferación Celular , Dasatinib/farmacología , Línea Celular Tumoral , Mutación , Inhibidores de Proteínas Quinasas/farmacología , Resistencia a Antineoplásicos , Antineoplásicos/farmacología
4.
Transl Neurodegener ; 12(1): 9, 2023 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-36850004

RESUMEN

Physical exercise is of great significance for maintaining human health. Exercise can provide varying degrees of benefits to cognitive function at all stages of life cycle. Currently, with the aging of the world's population and increase of life expectancy, cognitive dysfunction has gradually become a disease of high incidence, which is accompanied by neurodegenerative diseases in elderly individuals. Patients often exhibit memory loss, aphasia and weakening of orientation once diagnosed, and are unable to have a normal life. Cognitive dysfunction largely affects the physical and mental health, reduces the quality of life, and causes a great economic burden to the society. At present, most of the interventions are aimed to maintain the current cognitive level and delay deterioration of cognition. In contrast, exercise as a nonpharmacological therapy has great advantages in its nontoxicity, low cost and universal application. The molecular mechanisms underlying the effect of exercise on cognition are complex, and studies have been extensively centered on neural plasticity, the direct target of exercise in the brain. In addition, mitochondrial stability and energy metabolism are essential for brain status. Meanwhile, the organ-brain axis responds to exercise and induces release of cytokines related to cognition. In this review, we summarize the latest evidence on the molecular mechanisms underlying the effects of exercise on cognition, and point out directions for future research.


Asunto(s)
Disfunción Cognitiva , Calidad de Vida , Anciano , Humanos , Disfunción Cognitiva/genética , Disfunción Cognitiva/terapia , Cognición , Encéfalo , Envejecimiento
6.
J Med Chem ; 66(2): 1273-1300, 2023 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-36649216

RESUMEN

c-Jun N-terminal kinases (JNKs) are involved in the pathogenesis of various diseases. In particular, JNK3 and not JNK1/2 is primarily expressed in the brain and plays a key role in mediating neurodegenerative diseases like Parkinson's disease (PD). Due to the sequence similarity of JNK isoforms, developing isoform-selective JNK3 inhibitors to evaluate their biological functions and therapeutic potential in PD has become a challenge. Herein, docking-based virtual screening and structure-activity relationship studies identified 25c with excellent inhibitory activity against JNK3 (IC50 = 85.21 nM) and exhibited an over 100-fold isoform selectivity for JNK3 over JNK1/2 and remarkable kinase selectivity. 25c showed neuroprotective effects on in vitro and in vivo PD models by selectively inhibiting JNK3. Meanwhile, 25c showed an ideal blood-brain barrier permeability and low toxicity. Overall, this study provided a valuable molecular tool for investigating the role of JNK3 in PD and a solid foundation for developing JNK3-targeted drugs in PD treatment.


Asunto(s)
Proteína Quinasa 10 Activada por Mitógenos , Enfermedad de Parkinson , Humanos , Indazoles/farmacología , Indazoles/uso terapéutico , Enfermedad de Parkinson/tratamiento farmacológico , Isoformas de Proteínas , Fosforilación , Proteínas Quinasas JNK Activadas por Mitógenos
7.
Acta Pharm Sin B ; 12(5): 2171-2192, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35646548

RESUMEN

The mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase 1/2 (ERK1/2) signaling pathway is widely activated by a variety of extracellular stimuli, and its dysregulation is associated with the proliferation, invasion, and migration of cancer cells. ERK1/2 is located at the distal end of this pathway and rarely undergoes mutations, making it an attractive target for anticancer drug development. Currently, an increasing number of ERK1/2 inhibitors have been designed and synthesized for antitumor therapy, among which representative compounds have entered clinical trials. When ERK1/2 signal transduction is eliminated, ERK5 may provide a bypass route to rescue proliferation, and weaken the potency of ERK1/2 inhibitors. Therefore, drug research targeting ERK5 or based on the compensatory mechanism of ERK5 for ERK1/2 opens up a new way for oncotherapy. This review provides an overview of the physiological and biological functions of ERKs, focuses on the structure-activity relationships of small molecule inhibitors targeting ERKs, with a view to providing guidance for future drug design and optimization, and discusses the potential therapeutic strategies to overcome drug resistance.

8.
J Med Chem ; 65(5): 3758-3775, 2022 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-35200035

RESUMEN

c-Jun N-terminal kinases (JNKs), members of the mitogen-activated protein kinase (MAPK) family, are encoded by three genes: jnk1, jnk2, and jnk3. JNKs are involved in the pathogenesis and development of many diseases, such as neurodegenerative diseases, inflammation, and cancers. Therefore, JNKs have become important therapeutic targets. Many JNK inhibitors have been discovered, and some have been introduced into clinical trials. However, the study of isoform-selective JNK inhibitors is still a challenging task. To further develop novel JNK inhibitors with clinical value, a comprehensive understanding of JNKs and their corresponding inhibitors is required. In this Perspective, we introduced the JNK signaling pathways and reviewed different chemical types of JNK inhibitors, focusing on their structure-activity relationships and biological activities. The challenges and strategies for the development of JNK inhibitors are also discussed. It is hoped that this Perspective will provide valuable references for the development of novel selective JNK inhibitors.


Asunto(s)
Proteínas Quinasas JNK Activadas por Mitógenos , Neoplasias , Humanos , Sistema de Señalización de MAP Quinasas , Neoplasias/tratamiento farmacológico , Fosforilación , Isoformas de Proteínas/metabolismo
9.
Drug Discov Today ; 27(7): 1815-1831, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-34808390

RESUMEN

Autophagy is a multistep degradation pathway involving the lysosome, which supports nutrient reuse and metabolic balance, and has been implicated as a process that regulates cancer genesis and development. Targeting tumors by regulating autophagy has become a therapeutic strategy of interest. Drugs with other indications can have antitumor activity by modulating autophagy, providing a shortcut to developing novel antitumor drugs (i.e., drug repurposing/repositioning), as successfully performed for chloroquine (CQ); an increasing number of repurposed drugs have since advanced into clinical trials. In this review, we describe the application of different drug-repurposing approaches in autophagy for the treatment of cancer and focus on repurposing drugs that target autophagy to treat malignant neoplasms.


Asunto(s)
Antineoplásicos , Neoplasias , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Autofagia , Cloroquina/farmacología , Cloroquina/uso terapéutico , Reposicionamiento de Medicamentos , Humanos , Neoplasias/metabolismo
10.
Chem Commun (Camb) ; 57(97): 13194-13197, 2021 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-34816823

RESUMEN

Autophagy-based protein degradation is emerging as a promising technology for anti-diseases and innovative drug discovery. Here, we demonstrate a novel type of autophagy-targeting chimera (AUTAC) to degrade protein by targeting autophagy key protein LC3. The best compound 10f powerfully degraded BRD4 protein through the autophagy pathway and exhibited good anti-proliferative activity in multiple tumor cells, providing a powerful toolbox for medicinal chemists to study disease-related targets with autophagy-based degradation.


Asunto(s)
Autofagia , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas de Ciclo Celular/metabolismo , Células HeLa , Humanos , Estructura Molecular , Factores de Transcripción/metabolismo
11.
J Med Chem ; 64(12): 7963-7990, 2021 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-34101463

RESUMEN

Microtubules play a crucial role in multiple cellular functions including mitosis, cell signaling, and organelle trafficking, which makes the microtubule an important target for cancer therapy. Despite the great successes of microtubule-targeting agents in the clinic, the development of drug resistance and dose-limiting toxicity restrict their clinical efficacy. In recent years, multitarget therapy has been considered an effective strategy to achieve higher therapeutic efficacy, in particular dual-target drugs. In terms of the synergetic effect of tubulin and other antitumor agents such as receptor tyrosine kinases inhibitors, histone deacetylases inhibitors, DNA-damaging agents, and topoisomerase inhibitors in combination therapy, designing dual-target tubulin inhibitors is regarded as a promising approach to overcome these limitations and improve therapeutic efficacy. In this Perspective, we discussed rational target combinations, design strategies, structure-activity relationships, and future directions of dual-target tubulin inhibitors.


Asunto(s)
Antineoplásicos/farmacología , Moduladores de Tubulina/farmacología , Animales , Antineoplásicos/química , Apoptosis/efectos de los fármacos , Puntos de Control del Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Diseño de Fármacos , Ensayos de Selección de Medicamentos Antitumorales , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Humanos , Ratones , Estructura Molecular , Relación Estructura-Actividad , Moduladores de Tubulina/química
12.
Molecules ; 26(4)2021 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-33579052

RESUMEN

Microtubules composed of α/ß tubulin heterodimers are an essential part of the cytoskeleton of eukaryotic cells and are widely regarded as targets for cancer chemotherapy. IC261, which is discovered as an ATP-competitive inhibitor of serine/threonine-specific casein kinase 1 (CK1), has shown its inhibitory activity on microtubule polymerization in recent studies. However, the structural information of the interaction between tubulin and IC261 is still unclear. Here, we provided a high-resolution (2.85 Å) crystal structure of tubulin and IC261 complex, revealed the intermolecular interaction between tubulin and IC261, and analyzed the structure-activity relationship (SAR). Subsequently, the structure of tubulin-IC261 complex was compared with tubulin-colchicine complex to further elucidate the novelty of IC261. Furthermore, eight optimal candidate compounds of new IC261-based microtubule inhibitors were obtained through molecular docking studies. In conclusion, the co-crystal structure of tubulin-IC261 complex paves a way for the design and development of microtubule inhibitor drugs.


Asunto(s)
Quinasa de la Caseína I/antagonistas & inhibidores , Diseño de Fármacos , Indoles/química , Microtúbulos/efectos de los fármacos , Floroglucinol/análogos & derivados , Tubulina (Proteína)/química , Animales , Sitios de Unión , Colchicina/química , Colchicina/metabolismo , Cristalografía por Rayos X , Indoles/metabolismo , Simulación del Acoplamiento Molecular , Floroglucinol/química , Floroglucinol/metabolismo , Conformación Proteica , Relación Estructura-Actividad , Porcinos , Tubulina (Proteína)/metabolismo , Moduladores de Tubulina/química , Moduladores de Tubulina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA